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Abstract-A theoretical estimate is made of the liquid motion induced in the vicinity of a vapour bubble 
on a heated solid surface by evaporation and condensation at the bubble surface and by thermocapillarity 
effects. These results are used to examine the thermal equilibrium of the vapour bubble. 

It is found that whilst the effects of convection induced by evaporation and condensation are small, 
the effects of thermocapillarity may be important in determining the temperature of the equilibrium bubble. 

NOMENCLATURE 

bubble radius; 
liquid specific heat 

r* sin ey* ; 
heat transfer coefficient at liquid- 
vapour interface; 
liquid thermal conductivity; 
latent heat of evaporation; 
molecular weight; 
Marangoni number 

p&!&q-g)]: 
dimensionless quantity assocated with 
the evaporation and condensation at 
the bubble surface 

liquid Pranitl number; 
_I 

pressure; 
saturated vapour pressure correspond- 
ing to temperature T, ; 
heat flow through bubble surface; 
wall heat flux ; 
undisturbed wall heat flux; 

universal gas constant; 
radial distance; 
radius of sphere containing bubble 
disturbance; 
temperature; 
liquid undisturbed temperature at a 
distance from the wall equal to bubble 
radius; 
vapour temperature; 
undisturbed wall surface temperature; 
radial velocity; 
tangential velocity; 
distance in liquid where the undis- 
turbed liquid and vapour have identical 
temperatures; 
In r*; 
In r-7; 

bubble Nusselt number [ = ha/k] ; 
mesh size in radial direction; 
mesh size in tangential direction; 
vorticity ; 
angle measured from bubble axis; 
liquid dynamic viscosity; 
liquid density; 
surface tension; 
shear stress; 
stream function. 
asterisked symbols are dimensionless 
and defined in the paper. 
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I. INTRODUCTION 

CURRENT theories predicting the commence- 
ment of nucleate boiling at a heated solid 
surface in contact with a liquid, depend on a 
model for the thermal equilibrium of a bubble 
nucleus in a region in which the liquid tempera- 
ture changes rapidly with distance from the 
heated surface (Han and Griffith [l], Hsu [2], 
Bergles and Rohsenow [3], Sato and Matsu- 
mura [4], Davis and Anderson [5] and Kenning 
and Cooper [6]). 

Theoretical models describing the thermal 
equilibrium of a vapour bubble differ in the 
emphasis placed on the mechanism by which 
heat flow to the bubble. Thus, Kenning and 
Cooper [6] studied the case when the heat flow 
to the vapour bubble is solely by convection 
in the thermal layer induced by a forced flow. 
In this limiting case the bubble temperature 
assumes the temperature of the stagnation 
stream line. Gaddis and Hall [7] have presented 
a model of a vapour bubble in thermal equi- 
librium on a heated solid surface when the 
mechanism of heat transfer in the liquid is by 
conduction but when evaporation occurs over 
part of the bubble surface and condensation 
over the rest. The analysis has shown that there 
are temperature variations between local points 
on the bubble surface and the vapour tempera- 
ture inside the bubble which may be significant 
especially near the bubble base. These tempera- 
ture variations create two factors which may 
induce convection in the liquid surrounding the 
bubble. The first arises from evaporation and 
condensation at the bubble surface near its 
base and tip respectively, and the second from 
variations of surface tension due to variations 
of temperature over this interface. 

The work presented in this paper is comple- 
mentary to that in [7], its purpose is to study 
the motion that is induced in the vicinity of the 
bubble by the above factors, and to investigate 
its effect on the thermal equilibrium of the 
vapour bubble. The analysis is based on a 
simultaneous numerical solution of the equa- 
tions of motion and the energy equation. 

2. DESCRIPTION OF THE MODEL 

The model is illustrated in Fig. 1, where a 
vapour bubble sits on a cavity in a state of 

Constant heat transfer coefhclenr 

(r.8) 

wall surface Jndlsturbed 
llquld 
temperature 

I surface 

FIG. 1. Illustration of thermal boundary conditions 

thermal equilibrium. The following assump- 
tions are made: 

1. 
2. 
3. 

4. 
5. 

Physical properties are constant. 
Wall surface temperature is constant. 
Vapour pressure and temperature inside 
the bubble are uniform. 
Fluid is pure. 
The mechanism of evaporation or condensa- 
tion at an interface between a pure liquid 
and its vapour is usually viewed from the 
standpoint of the kinetic theory of gases as 
a difference between two quantities-a rate 
of departure of molecules from the surface 
of the liquid into the vapour space and a 
rate of arrival of molecules from the vapour 
space toward the interface. When evapora- 
tion takes place the departure rate exceeds 
the arrival rate and vice-versa, during 
equilibrium the two rates are equal. An 
expression of the heat transfer coefficient 
associated with the mass transfer of the 
fluid through the liquid vapour interface 
has been derived in [7]. It has been assumed 
that the evaporation and condensation 
coefficients for a pure fluid are equal to 
unity and that the vapour molecules have 



6. 

7. 

8. 

9. 

10. 
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velocity distribution identical with the Max- 
wellian distribution. The heat transfer co- 
efficient at the liquid-vapour interface 
derived under these assumptions, is given by, 

h = L&i’[(%),. -g-)] (l) 

and the dimensionless quantities are defined by 
r 

r* = - = dimensionless radial distance 
a 

apcu 
u* = - =: dimensionless radial velocity 

k 

apcv 
v* = - = dimensionless tangential velocity 

k and is uniform at the whole surface of the 
bubble nucleus. 
The vapour bubble has a hemispherical 
shape. 
The bubble radius is considerably smaller 
than the thickness of the non-turbulent 
layer near the solid boundary. 
The fluid is assumed initially to be sta- 
tionary and with linear temperature gradient. 
No interaction occurs between neighbour- 
ing bubbles. 
Direct heat flow from solid to vapour 
through solid-vapour interface is ignored. 

3. FORMULATION OF THE PROBLEM 

Equations of motion 
The equations of motion are treated as in (8). 

In dimensionless form the equations may be 
presented as 

E2Y* + G = 0 (2) 

=: 0 (3) 

where 
G = r* sin %[* 

r* F=p 
r* sin 8 

The dimensionless velocity components are 
related to the dimensionless stream function as 

U*__---E 1 

r*2 sin 8 a% 

1 aY* v*= _-- 
r* sin% ar* 

PCY 
!F* = ka = dimensionless stream function 

a2p4 
r*=,= 

dimensionless vorticity. 

If the inertia effects are small compared to 
viscous effects, the inertia term in equation (3) 
can be eliminated and the equation becomes 

E2G = 0. (6) 

3.2 Energy equation 
The energy equation may be presented in a 

dimensionless form as 

a2T* 2 aT* 1 a2T* cot 8 aT* 
ar*2+r*ar*+7ae’+r*2= 

1 
=m ar*x-- 

( 

aT* aY* aT* ciy* 

-j a% ar* . 
(7) 

The dimensionless temperature is defined by 

3.3 Boundary conditions 
The temperature, the stream function and 

the vorticity fields must be specified at all points 
around a closed boundary. 

3.3.1 Far from the bubble. The disturbances 
caused by the bubble in both the temperature 
and velocity fields decay as the distance from 
the bubble centre is increased. A hemisphere is 
imagined of an arbitrary radius I;, which is 
concentric with the hemispherical bubble. If the 
radius of the hemisphere is chosen big enough, 
the liquid outside this hemisphere will not be 
affected by the presence of the bubble. Thus, 
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the temperature distribution at this hemis- 
pherical surface is fixed from the original linear 
temperature distribution, and the stream func- 
tion and vorticity are zero. The choice of the 
radius 17 must be such that increasing it further 
bears no effect on both the temperature and 
velocity fields in the vicinity of the bubble. 

Thus, at I* = rf* the following relations must 
be fulfilled : 

(T*),,=,‘r = r/* cos0 (8) 

(y*)r*=, = 0 (9) 

(G),,=+ = 0. (10) 

3.3.2 At the axis ofsymmetry. From symmetry 

(y*)o=o = 0 

(G),=, = 0. 

3.3.3 At the liquid-vapour 
thermal boundary condition 
surface is 

= h[(T),=a - TJ 

(11) 

(12) 

(13) 

interface. The 
at the bubble, 

The previous equation may be expressed in a 
dimensionless form as 

= c$(T*),= 1 - T;] (14) 
I*= 1 

ha 
CI = k (bubble Nusselt number). 

The radial velocity at the bubble surface is 
related to the surface temperature by 

PW),=~ = h[Tv - (T),J. 

The previous equation may be presented in a 
dimensionless form as 

(u*),,=, = NW*).=, - 7-v*] (15) 

where 

N = %vma2ch 
k2L . 

The dimensionless parameter N is the product 
of the bubble Nusselt number and the dimen- 
sionless quantity (q_ac/kL). 

The relation between the radial velocity and 
the stream function at the bubble surface is 
obtained from equation (4), or 

(‘v*),= 1 = (“(u*),.= 1 sin 0 dfI 
i, 

substituting from equation (15) gives 

(Y*),=, = N[‘(T*)r.=, sin8dB 

- (1 - cos 0) T;]. (16) 

At the bubble base 

= N[ j (T*),*= 1 sin 8 de - Tz] 
0 

and from the condition of thermal equilibrium 
(see equation (29)), the stream function at the 
bubble base becomes 

(~*)l*=1,B=n,2 = 0. (17) 

To fix the vorticity at the bubble surface a 
second relation is required between the stream 
function and the temperature. This is obtained 
from the dependance of the shear stress at the 
liquid-vapour interface on the temperature 
gradient. From the balance of forces acting on 
an infinitesimal ring on the bubble surface, it 
can be shown that 

The previous expression may be presented in a 
dimensionless form as 

(z*),*=l = M, g i 1 (18) 
r*= 1 
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where hence from equations (4) and (5) 

sly* (4 ae BE=,2 = 

0 

ay* 0 = 
ar* 

0. 
o=n/2 

a”pcz 
z* = - 

pk 

and 

M 

k 
= %vma2cp 

k2p 
arangoni number). 

It is of interest to notice that the Marangoni 
number Mk is the product of the dimensionless 
parameter N and the dimensionless quantity 
[(pL/hp)( - %/a~)]. The latter quantity is a 
function only of the physical properties of the 
fluid and does not depend on the wall heat flux 
or the bubble radius. Thus for any particular 
fluid, M, varies linearly with N as N varies with 
the wall heat flux or the bubble size. 

The shear stress in the liquid can be related 
to the stream function [9]. At the bubble 
surface, the shear stress applied on the liquid 
from the interface may be expressed in a 
dimensionless form as 

aP + tote- 
ae 1 

. (19) 
I.*= 1 

Equating the two shear stress expressions gives 

(24) 

(25) 

Equations (22)-(25) are valid at I* > 1. At the 
bubble base there is a discontinuous change in 
the velocity components created by the con- 
tradicting requirements of the thermal and 
hydrodynamic boundary conditions. 

From equation (25) 

( y*)e=n,2 = constant 

but since 

(y*)e,+ = 0 at I* = 1 and at I* = r,* 

hence 

(Y*)e,n,2 = 0 at 1 < r* < rf* (26) 

also 

= 0 at 1 < r* < I;. (27) 
e=n/2 

KL,2 = - $ 
e=s/2 

Substituting in equation (2) gives 

[ 

a2y* ay* a2y* ay* -- 
ar*2 2TF7%F+cote ae _ -1 

aT* 
= Mksme x _’ -() (20) 

3.3.4 At the liquid-solid interface. The thermal 
boundary condition at the liquid-solid inter- 
face is 

(T*Lni2 = 0. (21) 

The hydrodynamic boundary conditions at 
the liquid-solid interface are 

(u*),,,,2 = 0 (22) 

(a*)(?+ = 0 (23) 

at 1 <r*<rf*. (28) 

3.4 Condition for thermal equilibrium 
Equilibrium is attained when there is a 

balance between evaporation and condensation 
i.e. when there is no net heat flow to the vapour 
bubble, or 

Q = 2xa2h 1 [T, - (T)_] sin 8 de = 0. 

Thus, the condition for thermal equilibrium may 
be expressed in a dimensionless form as 

%I2 
T,* = j (T*),= 1 sin 0 de. 

0 
(29) 

In many cases the results are summarized 
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by quoting the value of the dimensionless 
distance y$ where 

and y,,, is the distance in the liquid from the 
liquid-solid interface where the undisturbed 
liquid and the vapour in the equilibrium bubble 
have identical temperatures. It is clear that 

.YZ = q. 

From equations (3), (14), (15) and (20), it 
appears that the mathematical solution should 
be described by the dimensionless quantities 
Pr, CI, N and M,. Typical values for pure water 
boiling at atmospheric pressure (h = 7.7 x 
i03 kW/m’“C) with wall heat flux 200 kW/m2 
are as follows: if the bubble radius is 1 urn, then 
(;I z 10, N % @005 and M, 2 1.25, and if the 
bubble radius is 10 urn, then a 2 100, N r 05 
and M k % 125. 

4. NUMERICAL RESULTS 

The lattice is constructed as in [S]. The 
transformation r* = exp(Z) is made and equal 
intervals in 2 are used. This leads to a small 
mesh size near the bubble surface (where 
stream function and vorticity change most 
rapidly) and a coarser mesh size at a distance 
from the bubble. 

The radius of the outer sphere r/* is taken in 
the computation as r; = exp (2) = 7.39 or Z, = 
2. Few calculations were repeated for higher 
values of r;, the corresponding change in the 
temperature field near the bubble surface was 
insignjficant. For example, when a = 10, N = 
0.05 and M, = 125 the change in yz was not 
more than 3 per cent when r: was increased 
from 7.39 (Zf = 2) to 54.6 (.Zf = 4). 

The radial step AZ and the angular step A6 
were chosen such that computational errors 
were kept small. To examine the accuracy 
associated with the chosen mesh size, the com- 
puted results obtained from this numerical 
analysis in the case when conduction is the only 
mechanism of heat transfer in the liquid (N = 0, 

M, = 0) were compared with the corresponding 
results obtained from the series solution des- 
cribed in [73 for the case of a highly conducting 
wall (constant wall surface temperature). The 
comparison is shown in Table 1. 

Table 1. Comparison of series and numerical solutions for 
the case qf a highly conducting wall (constant wall surface 

temperature). and nojlow (N = 0, M, = 0) 
--_.---- __~~=_=_=_ _* --- .____-__ _ 

* .b’m Mesh parameters 

Series 
Numerical 

solution 
Lx solution AZ A0 

(from 171) 
(present 

calculation\ (approximates 

0 0.75 0.15 0.050 0.050 
I 0.70 069 0~050 0.050 

10 0.54 @52 0.050 0~050 
100 0.37 0.34 0.025 0,025 

_ .___...._ __-ll.- - --_ __. _ _ 

Few cases were considered to investigate the 
inertia effects on yz. For example computation 
was made for the case when c1 = 10, N = O-05, 
M, = 125 and Pr = 2. This nearly represents 
the case of water at atmospheric pressure with a 
wall heat flux of 200 kW/m’ when the radius of 
the equilibrium bubble is 10pm. The heat 
transfer coefficient at the liquid-vapour interface 
was taken as 770 kW/m’“C, or 0.1 of the theoret- 
ical value given by equation (l), the reduced 
value may be regarded due to the presence of 
contaminants or non-condensable gases in the 
fluid. The computation was repeated ignoring 
the inertia term in equation (3). The computed 
values of yz, were the same, also temperature 
variations at the bubble surface between the two 
cases were insigni~cant. The same procedure was 
repeated with LX = 1, N = @005, M, = 1.25 and 
Pr = O-1. The parameters were chosen in this 
case nearer to the liquid metal case (for the same 
wall heat flux and bubble size, liquid metals have 
much lower values of a, N and M, than water). 
Also, no change was found in yz when the inertia 
term was eliminated from the equation of 
motion. In the rest of the computations, equa- 
tion (6) was considered instead of equation (3). 

To investigate the effects of liquid motion 
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induced by the evaporation and condensation of 
the fluid at the liquid-vapour interface on yz, 
computations were made at different values of 
a and N for the particular case when M, = 0. 
The computed values of yz are shown in Table 
2. The parameter N was given increasing values 
in Table 2 as a was increased, since N is the 
product of a and the dimensionless quantity 
(q,,ac/kL). Thus, a has a direct effect on N, and 
in the limiting case when a = 0 the parameter 
N equals zero for all finite values of the quantity 

(4W~ ac/kL). When M, has a zero value the shear 
stress at the bubble surface vanishes (see 
equation (18)), and thermocapillary flow stops. 
In this case, the liquid motion in the vicinity of 
the bubble is induced only by evaporation and 
condensation. Thus, the particular cases when 
N = 0 in Table 2 correspond to the purely 

Table 2. Computed values of yz at different values of ct and N 
for the particular case when M, = 0 

d( 
N 

0 1 10 100 

0 0.15 0.69 0.52 0.34 
0.1 0.69 1 
1 0.52 I 

10 034 

OF A VAPOUR BUBBLE 2247 

conduction problem. Increasing N induces 
liquid flow by evaporation and condensation at 
the interface, which might affect yz through the 
non-linearity in equation (7). However, Table 2 
shows no such effect, hence the non-linearity has 
little effect on yz in the cases studied here. Hence, 
in these cases, the flow due to evaporation and 
condensation has little effect on yz in the absence 
of thermocapillarity. Similar behaviour was also 
observed when thermocapillary flow was present 
(M, has non-zero value). 

Since the parameter N is irrelevant to the 
problem in the considered cases, the variations 
in the computed values of yz are, then, only due 
to variations in a and M,. It becomes, then, 
reasonable to consider that, for this range, yz is 
only a function ofthe bubble Nusselt number and 
the Marangoni number. The computed values 
of yz at different values of a and M, are shown 
in Table 3 and summarized in Fig. 2. From Fig. 2 
it appears that at low values of the bubble 
Nusselt number (a < 1) thermocapillary flow 
becomes effective in modifying yz even at low 
values of the Marangoni number as M, = 1. 
At higher values of the bubble Nusselt number 
(a > 1) thermocapillary flow becomes effective 
only when the Marangoni number exceeds a 

FIG. 2. y: against M, for different values of a. 
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Table 3. Computed values of yz as a function of t( and M, 

a 

Mk -~ 

0 I 10 100 
-_ 

---~ 
hf# = 0 0.75 0.69 0.52 0.34 O(pure conduction) 

1 0.73 0.68 0.52 
10 0.59 0.58 0.49 1 

100 0.30 0.3 1 0.35 @34 

1000 0.21 0.20 0.16 @28 
10000 0.09 0.12 

_ 

value of the order of magnitude of the bubble 
Nusselt number. 

Typical distributions of the wall heat flux in 
the vicinity of the bubble are shown in Fig. 3, 
and a typical set of stream lines is illustrated in 
Fig. 4. Further details are given in [lo]. 

5. THERMOCAPILLARITY EFFECTS ON y: IN 2 3 
CERTAIN CASES r* 

Using the data given at the end of section (3) FIG. 3. Wall heat flux against distance from bubble ccntre. 

with a = 10, M, = 1.25 for the smaller bubble 
(lpm) and a = 100, M, = 125 for the larger thermocapillarity would have insignificant effect 
bubble (lOpm), it can be seen from Fig. 2 that on yz for either bubble. In each case yz has its 

Solid 

FIG. 4. Stream lines around a vapour bubble. 
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value for the stationary conduction problem. If 
it is assumed that h is reduced by a factor of 10 
(due to contamination of fluid), then a is reduced 
by a factor of 10 while Mk is unchanged. Figure 2 
then shows that thermocapillarity would hardly 
affect y; on the smaller bubble, but it would 
affect yz on the larger bubble reducing it to 
some 60 per cent of the vafue for the stationary 
conduction problem. Proceeding to the limiting 
case when the bubble surface is adiabatic gives 
a value of !x = 0 for both cases (Mk still does 
not change). In this case thermocapillarity has 
little effect on the smaller bubble, but its effect 
on the larger bubble is increased further reducing 
yz to about 40 per cent of the conduction 
value. 

outside the non-turbulent layer. However, 
thermocapillarity may still be important in 
these cases. Such bubbles have, in fact, con- 
siderable temperature differences over their 
surfaces, since the temperature at the bubble tip 
is governed by the liquid bulk temperature, 
while the temperature at the bubble base is 
governed by the local wall surface temperature. 
Thermocapillarity may be further enhanced in 
such situations, by the presence of foreign 
substances in the fluid due to restricting evapora- 
tion and condensation at the interface, this may 
cause a redistribution of the temperature dif- 
ference at the bubble surface. 
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EFFETS DU MOUVEMENT LIQUIDE INDUIT PAR LE CHANGEMENT DE PHASE ET LA 
THERMOCAPILLARITE SUR L’EQUILIBRE THERMIQUE D’UNE BULLE DE VAPEUR 

RCsumL-On rbalise I’etude thtorique du mouvement d’un liquide induit autour d’une bulle de vapeur 
sur la surface d’un solide chauffk, par les effets de I’tvaporation et de la condensation g la surface de la 
bulle et de la thermocapillarit& Ces r&hats sont utilises pour I’examen de I’Bquilibre thermique de la 
bulle de vapeur. 

On trouve que, tandis que les effets de la convection induite par 1’6vaporation et la condensation sent 
petits, les effets de la thermocapillaritt peuvent Ctre importants dans la d&termination de la temptrature 

d’tquilibre de la bulle. 

DER EINFLUSS DER DURCH DEN PHASENUBERGANG UND DIE 
THERMOKAPILLARITAT HERVORGERUFENEN FLiiSSIGKEITSBEWEGUNG AUF 

DAS THERMISCHE GLEICHGEWICHT EINER DAMPFBLASE 

Zusammenfassung-Es wurde eine theoretische AbschPtzung der Fliissigkeitsbewegung gemacht. die in 
der Umgebung einer Dampfblase an einer beheizten festen Oberfllche durch Verdampfung und 
Kondensation an der Blasenoberllichc und durch Einlliisse der ThermokapillaritLt hervorgerufen wird. 
Die Ergebnisse wurden zur Priifung des thermischen Gleichgewichts einer Dampfblase verwendet. 

Es zeigte sich. dass die Einlliisse der durch Verdampfen und Kondensieren erneugten Konvektion 
gering sind. die Einniisse der Thermokapillarit%t dagegen miiglicherweise bestimmend fiir die Blasen- 

temperature im Gleichgewidht wirken. 

BJIHHHME JJBkI~EHklti ~CBJJICOCTII B PE3YJIbTATE (DABOBbIX 
H3MEHEHklm M TEPMOKAIIBJIJIfiPHbIX IIPOqECCOB HA TEIIJIOBOE 

PABHOBECklE IIAPOBOrO IIY3bIPJI 

AHaoTaqasI-HonyseHa TeOpeTIlqecKaR oI{eHKa ~BMXCeHllR H(IIAKOCTR B6m3H IIapOBOI'O 

Ily3blpH Ha HaI'peTOti TBePJJOfi IIOBepXHOCTH, RbI3BaHHOrO PiCIIapeHEieM M KOHReHCaqHefi Ha 

IIOBepXHOCTIl IIy3bIpFI, a TaKxe TepMOHaFIMJlJIHpHbIMI4 IIpOl&eCCaMH. Pe3yJIbTaTbl OqeHKA 

HCIIOJIb30BaHbI AJIJ? HCCJIe~OBaHIUl TeIIJIOBOrO PaBHOBeCHH IIy3bIpH. 

YCTaHOBJIeHO, 'IT0 BJlliRHlIe TepMOKaIlHJIJIRpHbIX IlpO~eCCOB MOHCeT 6nTb CJ'lt4eCTBeHHbIM 

npli 0npeneneHAH TemnepaTypbI PaBHOBeCHOrO II)'3bIpR, Torna KBK BJIARHMe KOHBeKWlM B 

pe3j'JIbTaTe llCllapeHIlR H HOHAeHCal@lH He3HaWiTeJlhHO. 


