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THE EFFECTS OF LIQUID MOTION INDUCED BY

PHASE CHANGE AND THERMOCAPILLARITY ON THE
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THERMAL EQUILIBRIUM OF A VAPOUR BUBBLE

(Received 29 June 1970 and in revised form 29 September 1971)

Abstract—A theoretical estimate is made of the liquid motion induced in the vicinity of a vapour bubble
on a heated solid surface by evaporation and condensation at the bubble surface and by thermocapillarity
effects. These results are used to examine the thermal equilibrium of the vapour bubble.

It is found that whilst the effects of convection induced by evaporation and condensation are small,
the effects of thermocapillarity may be important in determining the temperature of the equilibrium bubble.

NOMENCLATURE
bubbile radius;
liquid specific heat

0* sinf 0 ( 1 0\

a2t T g <sin 95@)’
&

r*sin 6’
r*sin 6C*;
heat transfer coefficient at liquid-
vapour interface;
liquid thermal conductivity;
latent heat of evaporation;
molecular weight;
Marangoni number

_duicp(  031\].
Tk oT/{

dimensionless quantity associated with
the evaporation and condensation at
the bubble surface

B quazch]

kL
liquid Prandtl number;
pressure;
saturated vapour pressure correspond-
ing to temperature T, ;
heat flow through bubble surface;
wall heat flux;
undisturbed wall heat flux;
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universal gas constant;

radial distance;

radius of sphere containing bubble
disturbance;

temperature;

liquid undisturbed temperature at a
distance from the wall equal to bubble
radius;

vapour temperature;

undisturbed wall surface temperature;
radial velocity;

tangential velocity;

distance in liquid where the undis-
turbed liquid and vapour have identical
temperatures;

In r*;

In r;;

bubble Nusselt number [ = ha/k];
mesh size in radial direction;

mesh size in tangential direction;
vorticity;

angle measured from bubble axis:
liquid dynamic viscosity;

liquid density;

surface tension;

shear stress;

stream function.
asterisked symbols are dimensionless

and defined in the paper.
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1. INTRODUCTION

CURRENT theories predicting the commence-
ment of nucleate boiling at a heated solid
surface in contact with a liquid, depend on a
model for the thermal equilibrium of a bubble
nucleus in a region in which the liquid tempera-
ture changes rapidly with distance from the
heated surface (Han and Griffith [1], Hsu [2],
Bergles and Rohsenow [3], Sato and Matsu-
mura [4], Davis and Anderson [5] and Kenning
and Cooper [6]).

Theoretical models describing the thermal
equilibrium of a vapour bubble differ in the
emphasis placed on the mechanism by which
heat flow to the bubble. Thus, Kenning and
Cooper [6] studied the case when the heat flow
to the vapour bubble is solely by convection
in the thermal layer induced by a forced flow.
In this limiting case the bubble temperature
assumes the temperature of the stagnation
stream line. Gaddis and Hall [ 7] have presented
a model of a vapour bubble in thermal equi-
librium on a heated solid surface when the
mechanism of heat transfer in the liquid is by
conduction but when evaporation occurs over
part of the bubble surface and condensation
over the rest. The analysis has shown that there
are temperature variations between local points
on the bubble surface and the vapour tempera-
ture inside the bubble which may be significant
especially near the bubble base. These tempera-
ture variations create two factors which may
induce convection in the liquid surrounding the
bubble. The first arises from evaporation and
condensation at the bubble surface near its
base and tip respectively, and the second from
variations of surface tension due to variations
of temperature over this interface.

The work presented in this paper is comple-
mentary to that in [7], its purpose is to study
the motion that is induced in the vicinity of the
bubble by the above factors, and to investigate
its effect on the thermal equilibrium of the
vapour bubble. The analysis is based on a
simultaneous numerical solution of the equa-
tions of motion and the energy equation.
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2. DESCRIPTION OF THE MODEL

The model is illustrated in Fig. 1, where a
vapour bubble sits on a cavity in a state of

Constant heat transfer coefficient

Constant
wall surface Undisturbed
temperature . Ithuld
. emperat
Adiabatic perature

surface

Fi1G. 1. Illustration of thermal boundary conditions.

thermal equilibrium. The following assump-
tions are made:

1. Physical properties are constant.

2. Wall surface temperature is constant.

3. Vapour pressure and temperature inside
the bubble are uniform.

4. Fluid is pure.

5. The mechanism of evaporation or condensa-
tion at an interface between a pure liquid
and its vapour is usually viewed from the
standpoint of the kinetic theory of gases as
a difference between two quantities—a rate
of departure of molecules from the surface
of the liquid into the vapour space and a
rate of arrival of molecules from the vapour
space toward the interface. When evapora-
tion takes place the departure rate exceeds
the arrival rate and vice-versa, during
equilibrium the two rates are equal. An
expression of the heat transfer coefficient
associated with the mass transfer of the
fluid through the liquid vapour interface
has been derived in [7]. It has been assumed
that the evaporation and condensation
coefficients for a pure fluid are equal to
unity and that the vapour molecules have
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velocity distribution identical with the Max-
wellian distribution. The heat transfer co-
efficient at the liquid-vapour interface
derived under these assumptions, is given by,

M V[ /dp 1/p,
h= L(anT) [(d"?)n - E(f)] .

and is uniform at the whole surface of the
bubble nucleus.

6. The vapour bubble has a hemispherical
shape.

7. The bubble radius is considerably smaller
than the thickness of the non-turbulent
layer near the solid boundary.

8. The fluid is assumed initially to be sta-
tionary and with linear temperature gradient.

9. No interaction occurs between neighbour-
ing bubbles.

10. Direct heat flow from solid to vapour
through solid—vapour interface is ignored.

3. FORMULATION OF THE PROBLEM
3.1 Equations of motion
The equations of motion are treated as in (8).
In dimensionless form the equations may be
presented as

E¥Y* 4+ G=0 2)
1 % *
where
G = r¥*sin 6(*
C*
r*sin 0

, & sn@d/ 1 0
Esremst—bmmla—)
or* r** 00\ sin 0 06
The dimensionless velocity components are
related to the dimensionless stream function as

1 oP*
x® e
Y = Tsin0 00 “)
1 op*
* __ T
V= T Fsne or )
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and the dimensionless quantities are defined by

r¥ = 2 = dimensionless radial distance

u* = 4P% _ dimensionless radial velocity

v¥ = a/;(_cv = dimensionless tangential velocity
P = E% = dimensionless stream function
{* = azicc = dimensionless vorticity.

If the inertia effects are small compared to
viscous effects, the inertia term in equation (3)
can be eliminated and the equation becomes

E*G = 0. (6)
3.2 Energy equation

The energy equation may be presented in a
dimensionless form as

o*T* 20T* N 1 0°T* + cotd oT*
ar¥? ¥ orx - r*? 06? r*? 06
1 oT*oy*  oT* oy* ™
T r*2sin0\ or* 0 o0 or* |
The dimensionless temperature is defined by
T* = T - Twoc: - _(T — Twoo)k.
’I:I - TWOO anOO

3.3 Boundary conditions

The temperature, the stream function and
the vorticity fields must be specified at all points
around a closed boundary.

3.3.1 Far from the bubble. The disturbances
caused by the bubble in both the temperature
and velocity fields decay as the distance from
the bubble centre is increased. A hemisphere is
imagined of an arbitrary radius r*, which is
concentric with the hemispherical bubble. If the
radius of the hemisphere is chosen big enough,
the liquid outside this hemisphere will not be
affected by the presence of the bubble. Thus,
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the temperature distribution at this hemis-
pherical surface is fixed from the original linear
temperature distribution, and the stream func-
tion and vorticity are zero. The choice of the
radius r* must be such that increasing it further
bears no effect on both the temperature and
velocity fields in the vicinity of the bubble.

Thus, at r* = r} the following relations must
be fulfilled:

(T*)r,,:',f = r} cos f 8)
(#*)uepy, = 0 ©)
(G)oepe, = 0. (10)

3.3.2 At the axis of symmetry. From symmetry

aT*
G0 o
(P*)g_o =0 (12)
(G)y_ = O. (13)

3.3.3 At the liquid—-vapour interface. The
thermal boundary condition at the bubble,
surface is

oT
() =mm, -1

a

The previous equation may be expressed in a
dimensionless form as

oT*
(a,*) =™, =T ()

where
ha
o = m (bubble Nusselt number).
The radial velocity at the bubble surface is
related to the surface temperature by
pL@w),_, = [T, - (T),_,].

The previous equation may be presented in a
dimensionless form as

(u*)rt=1 = N[(T*)rt=1 - T:‘] (15)
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where

q,,,.a*ch

N =
k*L

The dimensionless parameter N is the product
of the bubble Nusselt number and the dimen-
sionless quantity (g, ac/kL).

The relation between the radial velocity and
the stream function at the bubble surface is
obtained from equation (4), or

[}
(P*)ozy = [(u*),,_,sin6do
0

substituting from equation (15) gives

2]
(¥, = N[{(T*)._,sinfdo
0

— (1 = cos§) T*]. (16)

At the bubble base
(lp*)r*=1.9=n/2
/2
= N[ j (T*),._,sin0d0 — T*]
0

and from the condition of thermal equilibrium
(see equation (29)), the stream function at the
bubble base becomes

(¥%) = 0. (17)

r*=1.60=n/2

To fix the vorticity at the bubble surface a
second relation is required between the stream
function and the temperature. This is obtained
from the dependance of the shear stress at the
liquid—vapour interface on the temperature
gradient. From the balance of forces acting on
an infinitesimal ring on the bubble surface, it
can be shown that

_ios_1(e(oT
a0 a'dT'‘\o0! _,

(T)r =a

The previous expression may be presented in a
dimensionless form as
oT*
(%), = M"(W) (18)

r*=1
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where

and

N .
M, = qw:f #cp ( - g%) (Marangoni number).

It is of interest to notice that the Marangoni
number M, is the product of the dimensionless
parameter N and the dimensionless quantity
[(pL/hu)(—05/¢T)). The latter quantity is a
function only of the physical properties of the
fluid and does not depend on the wall heat flux
or the bubble radius. Thus for any particular
fluid, M, varies linearly with N as N varies with
the wall heat flux or the bubble size.

The shear stress in the liquid can be related
to the stream function [9]. At the bubble
surface, the shear stress applied on the liquid
from the interface may be expressed in a
dimensionless form as

N 1 [a*y*  ow* o*¢*
(eey = sin §| or*? or* 06?
o2
+ COtB—ab‘“]r*zl. (19)

Equating the two shear stress expressions gives
o+ et + cot 0 oP*
or*? 06? a0 ..,

*

. oT
= Mk sin 6 <_6—é—>r*= 1. (20)

3.3.4 At the liquid—solid interface. The thermal
boundary condition at the liquid-solid inter-
face is

op*
or*

(T*)g=r2 = 0. 21)

The hydrodynamic boundary conditions at
the liquid-solid interface are

(“*)o=n/2 =0

(U*)9=,,/2 =0

22
(23)
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hence from equations (4) and (5)

aw*)
=0 (24)
< 60 8=n/2
p
<8 *) =0. (25)
or 0=r/2

Equations (22)25) are valid at r* > 1. At the
bubble base there is a discontinuous change in
the velocity components created by the con-
tradicting requirements of the thermal and
hydrodynamic boundary conditions.

From equation (25)

(511*)6,="/2 = constant

but since
(P*)prp =0 at r*=1 andat r*=r}
hence
(P¥p_pp =0 at 1<r*<rt  (26)
also
L
<F>9=n/2 =0 at 1<r¥g r;. (27)
Substituting in equation (2) gives
1 [o°p*
e = =75 ),
at 1 <r* g r}‘. (28)

3.4 Condition for thermal equilibrium

Equilibrium is attained when there is a
balance between evaporation and condensation
i.e. when there is no net heat flow to the vapour
bubble, or

n/2
Q =2na*h | [T, —(T),_,]sin0dd = 0.
0

Thus, the condition for thermal equilibrium may
be expressed in a dimensionless form as
n/2

T* = | (T*),._,sin6d6.

0

(29)

In many cases the results are summarized
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by quoting the value of the dimensionless
distance y¥, where

*
ez

yp ==
a

and y, is the distance in the liquid from the
liquid-solid interface where the undisturbed
liquid and the vapour in the equilibrium bubble

have identical temperatures. It is clear that
=Ty

From equations (3), (14), (15) and (20), it
appears that the mathematical solution should
be described by the dimensionless quantities
Pr, o, N and M,. Typical values for pure water
boiling at atmospheric pressure (h =77 x
10* kW/m?°C) with wall heat flux 200 kW/m?
are as follows: if the bubble radius is 1 um, then
a % 10, N = 0005 and M, > 125, and if the
bubble radius is 10 pm, then « =~ 100, N ~ 05
and M, ~ 125.

4. NUMERICAL RESULTS

The lattice is constructed as in [8)]. The
transformation r* = exp(Z) is made and equal
intervals in Z are used. This leads to a small
mesh size near the bubble surface (where
stream function and vorticity change most
rapidly) and a coarser mesh size at a distance
from the bubble.

The radius of the outer sphere r} is taken in
the computation as rf =exp(2) =739or Z, =
2. Few calculations were repeated for higher
values of rf, the corresponding change in the
temperature field near the bubble surface was
insignificant. For example, when « = 10, N =
005 and M, = 125 the change in y* was not
more than 3 per cent when r} was increased
from 739 (Z, = 2) to 546 (Z, = 4).

The radial step AZ and the angular step A8
were chosen such that computational errors

were kept small. To examine the accuracy
associated with the chosen mesh size, the com-

puted resulits obtained from this numerical
analysis in the case when conduction is the only
mechanism of heat transfer in the liquid (N = 0,
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M, = 0) were compared with the corresponding
results obtained from the series solution des-
cribed in [7] for the case of a highly conducting
wall (constant wall surface temperature). The
comparison is shown in Table 1.

Table 1. Comparison of series and numerical solutions for
the case of a highly conducting wall (constant wall surface
temperature), and no flow (N = 0, M, = 0}

v Mesh parameters
Series Numerical
luti
3 solution ?;rzs:g: AZ Af
{(from [7]) calculation) {approximate)
0 075 075 0-050 0050
1 070 069 0050 G050
10 0-54 052 0050 0-050
100 037 034 0025

0-025

Few cases were considered to investigate the
inertia effects on y*. For example computation
was made for the case when o = 10, N = 005,
M, =125 and Pr = 2. This nearly represents
the case of water at atmospheric pressure with a
wall heat flux of 200 kW/m? when the radius of
the equilibrium bubble is 10 um. The heat
transfer coefficient at the liquid—vapour interface
was taken as 770 kW/m?2°C, or 01 of the theoret-
ical value given by equation (1), the reduced
value may be regarded due to the presence of
contaminants or non-condensable gases in the
fluid. The computation was repeated ignoring
the inertia term in equation (3). The computed
values of y*, were the same, also temperature
variations at the bubble surface between the two
cases were insignificant. The same procedure was
repeated with o = 1, N = 0:005, M, = 1-25 and
Pr = 0-1. The parameters were chosen in this
case nearer to the liquid metal case (for the same
wall heat flux and bubble size, liquid metals have
much lower values of «, N and M, than water).
Also, no change was found in y* when the inertia
term was eliminated from the equation of
motion. In the rest of the computations, equa-
tion (6) was considered instead of equation (3}.

To investigate the effects of liquid motion
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induced by the evaporation and condensation of
the fluid at the liquid—vapour interface on y¥,
computations were made at different values of
o and N for the particular case when M, = 0.
The computed values of y* are shown in Table
2. The parameter N was given increasing values
in Table 2 as o was increased, since N is the
product of « and the dimensionless quantity
(@woac/kL). Thus, a has a direct effect on N, and
in the limiting case when « = 0 the parameter
N equals zero for all finite values of the quantity
(qoac/kL). When M, has a zero value the shear
stress at the bubble surface vanishes (see
equation (18)), and thermocapillary flow stops.
In this case, the liquid motion in the vicinity of
the bubble is induced only by evaporation and
condensation. Thus, the particular cases when
N =0 in Table 2 correspond to the purely

Table 2. Computed values of y¥ at different values of o and N
for the particular case when M, = 0
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conduction problem. Increasing N induces
liquid flow by evaporation and condensation at
the interface, which might affect y* through the
non-linearity in equation (7). However, Table 2
shows no such effect, hence the non-linearity has
little effect on y* in the cases studied here. Hence,
in these cases, the flow due to evaporation and
condensation has little effect on y* in the absence
of thermocapillarity. Similar behaviour was also
observed when thermocapillary flow was present
(M, has non-zero value).

Since the parameter N is irrelevant to the
problem in the considered cases, the variations
in the computed values of y* are, then, only due
to variations in « and M,. It becomes, then,
reasonable to consider that, for this range, y¥ is
only a function of the bubble Nusselt number and
the Marangoni number. The computed values
of y* at different values of « and M, are shown
in Table 3 and summarized in Fig. 2. From Fig, 2
it appears that at low values of the bubble
Nusselt number (x < 1) thermocapillary flow
becomes effective in modifying y* even at low
values of the Marangoni number as M, = 1.
At higher values of the bubble Nusselt number
(o > 1) thermocapillary flow becomes effective
only when the Marangoni number exceeds a

N
0 1 10 100
0 075 0-69 052 0-34
ol — 069 I l
1 — — 0-52
10 — — — 034
T vrv( T
o7 a =0

06
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T ;IHHW T
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T
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b e b e b
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o8] | 0

Al l—
100 10000
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*

FiG. 2. y* against M, for different values of a.
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Table 3. Computed values of y* as a function of o and M,

o

Mk
0 ] 10 100
0 075 069 052 034
1 073 068 052

10 0-59 0-58 049 !
100 030 031 035 0-34
1000 021 020 016 028
10000 — — 009 012

value of the order of magnitude of the bubble
Nusselt number.

Typical distributions of the wall heat flux in
the vicinity of the bubble are shown in Fig. 3,
and a typical set of stream lines is illustrated in
Fig. 4. Further details are given in [10].

5. THERMOCAPILLARITY EFFECTS ON y* IN
CERTAIN CASES

Using the data given at the end of section (3)
with « = 10, M, = 125 for the smaller bubble
(1uym) and « = 100, M, = 125 for the larger
bubble (10 um), it can be seen from Fig. 2 that

v:o
000365
Oig

| vapour

E. S. GADDIS

a=l0

M, = O(pure conduction)

4./ 9, )

9,

FiG. 3. Wall heat flux against distance from bubblc centre.

thermocapillarity would have insignificant effect
on y* for either bubble. In each case y* has its

N =0-05
M,= 125

0-00365
D

2
Solid

FIG. 4. Stream lines around a vapour bubble.
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value for the stationary conduction problem. If
it is assumed that & is reduced by a factor of 10
{due to contamination of fluid), then « is reduced
by a factor of 10 while M, is unchanged. Figure 2
then shows that thermocapillarity would hardly
affect y* on the smaller bubble, but it would
affect y* on the larger bubble reducing it to
some 60 per cent of the value for the stationary
conduction problem. Proceeding to the limiting
case when the bubble surface is adiabatic gives
a value of « = C for both cases (M, still does
not change). In this case thermocapillarity has
little effect on the smaller bubble, but its effect
on the larger bubble is increased further reducing
y* to about 40 per cent of the conduction
value.

6. CONCLUSION

The analysis has shown that whilst the effects
of convection induced by evaporation and con-
densation on y* are small in the considered
cases, the effects of thermocapillarity may be
significant.

An important factor that has a significant role
in relation to thermocapillarity is the level of
heat transfer coefficient at the liquid—vapour
interface. High heat transfer coefficients reduce
thermocapiliary flow. In fact thermocapillarity
has its utmost effect when the bubble surface is
adiabatic. However, high heat transfer co-
efficients increase bubble temperature due to
conduction alone.

The numerical results show that thermocapil-
larity reduces y* compared with the conduction
value. Hence, in the range of the computed
results, thermocapillary flow reduces the tem-
perature difference between the wall surface and
the vapour inside the equilibrium bubble. Thus,
including thermocapiliarity effects in the con-
duction model leads to lower wall superheat for
nucleation and lower wall surface temperature
for the incipience of boiling.

The method of calculation presented in this
paper fails to deal with big bubbles penetrating
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outside the non-turbulent layer. However,
thermocapillarity may still be important in
these cases. Such bubbles have, in fact, con-
siderable temperature differences over their
surfaces, since the temperature at the bubble tip
is governed by the liquid bulk temperature,
while the temperature at the bubble base is
governed by the local wall surface temperature.
Thermocapillarity may be further enhanced in
such situations, by the presence of foreign
substances in the fluid due to restricting evapora-
tion and condensation at the interface, this may
cause a redistribution of the temperature dif-
ference at the bubble surface.
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EFFETS DU MOUVEMENT LIQUIDE INDUIT PAR LE CHANGEMENT DE PHASE ET LA
THERMOCAPILLARITE SUR L’EQUILIBRE THERMIQUE D'UNE BULLE DE VAPEUR

Résumé—On réalise 1’étude théorique du mouvement d'un liquide induit autour d’une bulle de vapeur
sur la surface d'un solide chauffé, par les effets de I'évaporation et de la condensation a la surface de la
bulle et de la thermocapillarité. Ces résultats sont utilisés pour 'examen de ’équilibre thermique de la
bulle de vapeur.
On trouve que, tandis que les effets de la convection induite par ’évaporation et la condensation sont
petits, les effets de la thermocapillarité peuvent étre importants dans la détermination de la température
d’équilibre de la bulle.

DER EINFLUSS DER DURCH DEN PHASENUBERGANG UND DIE
THERMOKAPILLARITAT HERVORGERUFENEN FLUSSIGKEITSBEWEGUNG AUF
DAS THERMISCHE GLEICHGEWICHT EINER DAMPFBLASE

Zusammenfassung—Es wurde eine theoretische Abschatzung der Flissigkeitsbewegung gemacht, die in
der Umgebung einer Dampfblase an einer beheizten festen Oberfliche durch Verdampfung und
Kondensation an der Blasenoberflache und durch Einflisse der Thermokapiliaritat hervorgerufen wird.
Die Ergebnisse wurden zur Priifung des thermischen Gleichgewichts einer Dampfblase verwendet.
Es zeigte sich. dass die Einflisse der durch Verdampfen und Kondensieren erzeugten Konvektion
gering sind. die Einfliisse der Thermokapillaritit dagegen moglicherweise bestimmend fiir die Blasen-
temperature im Gleichgewicht wirken.

BJIUAHUE OBIHEHUA HUJKOCTU B PE3VJIBTATE ®A30BBIX
U3MEHEHUN U TEPMOKAIIWJIJAPHEBIX ITPOLECCOB HA TEIIJIOBOE
PABHOBECHE ITAPOBOI'O IIY3bIPA

AnHoranna—IloayveHa TeopeTUYECKAR OIEHKA /BIWIKEHHA JKUAKOCTH BOINBH TNApOBOTO
Ny3WpA HA HArpeToll TBephoi MOBepXHOCTH, BEHIBBAHHOTO HCIAapeHMeM M KOHJeHcaluel Ha
HOBEPXHOCTH MY3HIPA, 4 TAKKe TePMOKANMWUIAPHHIMUM OpoLeccaMu. Pe3yipTaThl OHEHKH
UCTIOTH30BAHEL AJIA UCCIENOBAHUA TEIJIOBOTO PABHOBECHA MY3HIPA.
VcranopieHo, 4To BIMAHUE TePMOKAMMIUIAPHHIX MPOLECCOB MOMKET GHITh CYLIECTBEHHBIM
IIpY OIpeieIeHNH TeMIepaTyphl PABHOBECHOTO INyBHIPA, TOIJA KAaK BJMAHNE KOHBEKUMM B
pesyJabTaTe UCIAPEHUA ¥ KOHAEHCAIMK HE3HAYUTEJIHHO,



